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Every day, billions of human cells terminate their normal activities and launch intrinsic suicide

pathways. Timely cell death is orchestrated by destructive functions encoded by dying cells,

such as caspase proteases in the case of apoptotic or pyroptotic cell death. Caspases cleave spe-

cific intracellular substrates to kill and dismantle cells destined for elimination, and their dys-

regulation leads to a range of human disorders [1]. Drosophila models have proven to be key

tools for understanding the regulation of caspases in cell death, but have also revealed other

unanticipated roles for caspases, including cell proliferation [2], sperm maturation [3] and

neuronal pruning [4]. Furthermore, the presence of widespread, nonlethal caspase activity in

fly tissues suggests that there could be additional caspase-dependent processes besides those

that are already known [5]. Thus, a new challenge is to understand the connections between

non-death and pro-death functions of caspases. A new study from the Bergmann lab [6]

reveals that mono-ubiquitylation of the Drosophila caspase Dronc inhibits apoptosis; more

surprisingly, mono-ubiquitylation also inhibits an alternative role of Dronc. This work uncov-

ered a role for Dronc in several non-lethal activities and organismal survival that apparently

does not require Dronc’s protease activity.

Presumed regulation of cell death by caspase degradation

Three of the seven Drosophila caspases (Dronc, Dredd, and Strica) appear to be similar to

mammalian “initiator” caspases that cleave and activate “effector” caspases causing apoptosis

[7], whereas the remaining four Drosophila caspases resemble effector caspases. The main

initiator caspase Dronc (homologous to mammalian caspases-2 and -9) plays a major role in

activating cell death during fly development and following injury by activating the effector cas-

pases Drice and Dcp-1 (homologous to mammalian caspases-3 and -7) [8]. Dronc activation is

dependent on direct binding of its N-terminal caspase recruitment domain (CARD) to the

CARD domain in the adapter protein Dark (homologous to mammalian Apaf1), together

forming the death-inducing apoptosome [9].

Caspases are tightly controlled by several negative regulatory mechanisms. Active Dronc,

presumably derived from the apoptosome, is inhibited by ubiquitylation, a process largely

dependent on the E3 ubiquitin ligase Diap1 (Drosophila inhibitor of apoptosis; homologous to

human XIAP, cIAP1/2). The proposed mechanism is the poly-ubiquitylation of Dronc by

Diap1 to trigger either Dronc degradation via the proteasome or its inhibition by other means

[10, 11]. However, there is a lack of clarity in the mechanisms of Dronc regulation, as both the

proteasome and autophagy pathways must be ablated to stabilize Dronc levels [12].
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Non-degradative inhibition of Dronc by mono-ubiquitylation

Prior to apoptosome formation, unprocessed Dronc is negatively regulated by ubiquitylation;

surprisingly, this does not require Dronc degradation [11]. Research from the Bergmann lab

[6] sheds light on the regulation of Dronc activity by mono-ubiquitylation, rather than poly-

ubiquitylation, in living cells. Mono-ubiquitylation of mammalian caspases has been described

[13], and is also thought to alter function rather than promote degradation [14].

Kamber Kaya et al. [6] report that overexpressed Dronc in living tissues is mono-ubiquity-

lated on lysine 78 (K78) in the CARD domain. Using mass spectrometry and immunoblot

analysis, they detected mono- but not poly-ubiquitylated Dronc in developing larval and pupal

extracts, a finding further supported by in vitro ubiquitylation on K78 in extracts. Based on a

recent crystal structure analysis, K78 forms an intermolecular hydrogen bond with the Dronc

residue that directly contacts Dark at the center of the CARD–CARD interface between Dronc

and Dark [9]. Therefore, mono-ubiquitylation at lysine 78 is likely to alter or inhibit apopto-

some formation and subsequent cell death. Consistent with mono-ubiquitylation being exclu-

sive to living cells, Kamber Kaya et al. [6] failed to find any lysine 78–ubiquitylated Dronc in

larval and pupal extracts after hs-hid induced apoptosis. Although mutation of the lysine 78

site resulted in a strong inhibition of mono-ubiquitylation, residual mono-ubiquitylation sug-

gested that other sites might be modified when the major site is mutated.

This work [6] provides considerable additional genetic and biochemical data indicating

that Dronc K78 mono-ubiquitylation inhibits apoptosis. Overexpression of Dronc and Dark

in the eye-antenna imaginal disc epithelial tissues triggers massive cell death in the developing

eye, providing a model system to dissect function [10]. Ubiquitylation-resistant Dronc (K78R)

was demonstrated to enhance cell death in the developing eye and pupal lethality more than

wild-type (WT) Dronc expressed at similar levels. The enhanced apoptotic function of Dronc

K78R correlates with higher proteolytic function in vivo, but this is not due to higher inherent

catalytic activity, as recombinant proteins cleave Drice similarly in vitro [6]. The possibility

that mono-ubiquitylation inhibits Dronc—Dark interaction is suggested by increased binding

of K78R to Dark in co-immunoprecipitations [6], consistent with structural data [9].

The E3 ubiquitin ligase responsible for mono-ubiquitylation of Dronc K78 may be Diap1.

This is supported by the finding that heterozygosity for diap1 reduced Dronc mono-ubiquity-

lation [6]. Additionally, Diap1 is sufficient to mono-ubiquitylate Dronc in vitro. Thus, it

appears that in living cells, Diap1 can inhibit apoptosome formation through mono-ubiquity-

lation of Dronc. However, Dronc inhibition by mono-ubiquitylation has additional functions

besides inhibiting apoptosis (Fig 1).

Non-apoptotic, non-catalytic caspase activity

The authors of this study [6] used several strategies to investigate a physiological role for

Dronc mono-ubiquitylation. Ubiquitous expressions of WT and mutant forms of Dronc were

used to rescue organismal lethality of dronc null flies. Loss of zygotic dronc is known to cause a

semi-lethal phenotype, with most animals dying during pupal stages, late in development [8].

Although these animals have extra cells, it is unknown whether the lack of cell death is the

cause of organismal lethality. However, it was expected that organismal survival required the

elimination of some cells by caspases because mutation of the catalytic cysteine (C318A),

which abolishes enzymatic activity, also abolished rescue. Unexpectedly, Kamber Kaya et al.

[6] found that catalytically inactive Dronc that cannot be mono-ubiquitylated (K78R/C318A)

rescued the lethality of dronc nulls—a finding that challenges the general assumption that

Dronc’s proteolytic activity is essential for normal organismal development. Rescue of lethality

by Dronc K78R/C318A is not due to a restoration of catalytic function or of increased
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apoptosis-inducing activity as extra cells remain, at least in the developing eye and the develop-

ing wing [6]. This suggests that mono-ubiquitylation also inhibits non-apoptotic functions of

Dronc that are essential for the survival of the organism. Further experimentation using

knock-in mutations will be required to confirm this hypothesis.

Compensatory cell proliferation

To test for non-apoptotic functions of Dronc, Kamber Kaya et al. [6] investigated a phenome-

non known as apoptosis-induced compensatory cell proliferation (AiP), which occurs when

apoptotic cells release signals that promote proliferation of surrounding living cells. This pro-

cess was discovered in imaginal discs manipulated to activate Dronc while suppressing effector

caspases [2], revealing a non-apoptotic role for Dronc in triggering the proliferation of neigh-

boring cells. The mechanisms are still under investigation, but are suggested to involve

Fig 1. The caspase Dronc functions in both living and dying cells. The Drosophila caspase Dronc, which is

required for fly development, is composed of an N-terminal CARD domain, a large subunit (L) containing the Cys

active site required for proteolytic catalysis, and a small subunit (S) that is auto-catalytically cleaved from the

precursor zymogen following recruitment to the Dark apoptosome. The ubiquitin ligase Diap1 mono-ubiquitylates

lysine 78 in the CARD domain, which inhibits cell death by interfering with formation of the Dronc–Dark apoptosome.

In contrast to non-apoptotic functions of Dronc in some model systems, Dronc’s proteolytic activity is unexpectedly not

required for Dronc’s role in apoptosis-induced cell proliferation. Surprisingly, mono-ubiquitylation also suppresses this

non-apoptotic function of Dronc, as Dark is still required. Thus, an alternative CARD-independent interaction with

Dark or other factor could potentially mediate the observed non-death functions of Dronc.

doi:10.1371/journal.pgen.1006545.g001
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autocrine/paracrine Dronc-dependent activation of the c-Jun N-terminal kinase (JNK) path-

way, which in turn activates conserved signaling pathways, possibly requiring secretion of

tumor necrosis factor (TNF) ortholog Eiger by local activated macrophages (hemocytes) [15].

AiP-related processes have also been reported in mammals and are suggested to contribute to

tumorigenesis [16].

Although the catalytically dead C318A mutant of Dronc fails to cause head overgrowth via

AiP, blocking mono-ubiquitylation of catalytically inactive Dronc (K78R/C318A) rescues AiP

[6]. The proliferation-promoting activity of Dronc K78R/C318A is Dark dependent [6]. Thus,

some non-apoptotic functions of Dronc may not require caspase activity when the interaction

between Dronc and Dark is strengthened through the inhibition of mono-ubiquitylation. This

suggests that the Dark–Dronc complex may recruit other proteins that are important for non-

apoptotic caspase functions. In addition, other caspases may compensate for the lack of Dronc

in some essential proteolytic functions, and be activated by the mutant Dronc. For example,

Strica is known to function with Dronc during certain developmental events [17] and in some

types of cell competition [18], which could be tested by removing both Dronc and Strica.

Consistent with this new study from Bergmann and colleagues, there are reports of catalyti-

cally independent non-apoptotic functions of fly and mammalian caspases [19, 20]. Catalyti-

cally inactive Dronc was shown to inhibit the mitogenic potential of the conserved Numb

protein in Drosophila neural stem cells [19]. In this paradigm, enforced expression of a phos-

pho-mimetic form of Numb attenuated endogenous Numb activity and caused ectopic neuro-

blast formation, which was suppressed by overexpression of either WT or catalytically inactive

forms of Dronc.

Sperm development

Although the catalytic activity of Dronc was not required to rescue pupal lethality and AiP if

mono-ubiquitylation was blocked, Dronc K78R/C318A failed to rescue male fertility defects in

dronc null flies [6]. Thus, Dronc catalytic activity may be required for some non-apoptotic

roles of Dronc, such as the non-apoptotic caspase function required for spermatid terminal

differentiation in Drosophila called individualization [3]. In this process, the syncytial sperma-

tids shed much of their cytoplasm and unneeded organelles into a sack-like structure dubbed

the “waste bag,” which is conceptually reminiscent of an apoptotic corpse [3]. In contrast to

AiP, this extrusion of cytoplasmic contents requires effector caspases in addition to the apop-

tosome, plus the activity of Cullin-3 [21, 22]. However, a role for mono-ubiquitylation in regu-

lating spermatid individualization is not yet known.

Future directions

Bergmann and colleagues’ study [6] opens up new directions for research in the regulation of

non-apoptotic caspase functions. In addition to the model systems tested in their study, other

non-death functions of caspases in flies and mammals will require further examination to dis-

tinguish between proteolytic and non-proteolytic caspase functions. For example, the notion

that the Drosophila apoptotic system might be involved in determining the number of external

sensory bristles (macrochaetae) stems from observations of extra macrochaetae in flies mutant

for dark, dronc and cytochrome c, but growing evidence implicates non-apoptotic functions of

these factors involving the regulation of cell signaling pathways (reviewed in [23]). Restricted

activation of caspases is suggested to prune dendritic spines on neurons in the fly without kill-

ing the neuron [4]. However, caspases have also been implicated prior to the pruning steps

[24], and the requirements for proteolytic activity can be difficult to evaluate, as demonstrated

in the new study by Bergmann et al. [6]. Mammalian caspases and regulators of caspase
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activation have been demonstrated to regulate neuronal activity independent of apoptosis [25,

26], but whether these caspase functions are limited to their proteolytic activities has not been

thoroughly investigated.

The most striking finding of the new work by Bergmann and colleagues [6] is that Dronc’s

essential function during development may not be its proteolytic apoptosis function. However,

this interpretation could be confounded by the presence of residual maternally-loaded Dronc

protein in the zygotic dronc nulls [8]. Although zygotic dronc nulls are semilethal at pupal

stages, mutants lacking both maternally loaded and zygotic Dronc are lethal earlier during

embryonic stages, and lack almost all embryonic apoptosis. Kamber Kaya et al. do not report

that the Dronc K78R/C318A mutant rescued this maternal/zygotic dronc null phenotype. In

theory, overexpression of the Dronc K78R/C318A mutant could stabilize or activate mater-

nally loaded WT Dronc protein, which could allow enough proteolytically competent Dronc

to persist in carrying out functions required for organismal viability. Use of one of the new

genetically encoded caspase sensors would allow testing of this possibility [27].
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